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1 Experiment Overview

In support of the ongoing mission to improve National Weather Service (NWS) products and services

for winter weather, the Hydrometeorology Testbed (HMT) within the Weather Prediction Center

(WPC) conducted the 14th annual Winter Weather Experiment (WWE) during the 2023-2024 winter

season. The WWE provides a collaborative research to operations (R2O) experience, bringing

together members of the forecasting, research, and academic communities to evaluate and discuss

winter weather forecast challenges. Recent WWE successes include improvements to the National

Blend of Models, incorporation of snow squalls to the mPING crowd-sourcing observation app, and

increased discussion on the creation of winter specific verification metrics.

As the WWE completed its 14th year, HMT staff sought to continue evaluations on the

next generation of NWS deterministic and ensemble forecast systems. This year also included

evaluation of forecast thermodynamic profiles based around capabilities developed within a new

interactive sounding viewer webpage. Building on the success of previous years, the WWE utilized

a combination of virtual and hybrid experiment activities and analyzed retrospective case studies to

perform the experiment objectives.

2 Science and Operations Objectives

The objectives of the 14th Annual Winter Weather Experiment were:

• Evaluate and compare the utility of operational and experimental deterministic snowfall and

precipitation type forecasts from high-resolution convection-allowing models (CAMs)

• Explore modeled and observed thermodynamic profiles via an interactive sounding viewer tool

• Compare CAM snow to liquid ratio (SLR) forecasts to machine learning post-processed SLR

forecasts

• Evaluate the accuracy of a gridded freezing rain analysis compared to available observations

and CAM forecasts

• Explore experimental CAM ensemble probabilistic forecast products and machine learning

post-processing guidance for winter precipitation

• Use both event- and season-long verification to assess the performance of experimental datasets
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3 Season Summary

Similar to the previous winter season (2022-2023), the winter of 2023-2024 had well below normal

snowfall across much of the eastern Continental U.S. Figure 1 shows the seasonal total snowfall

estimated by the National Snowfall Analysis (provided by the National Operational Hydrologic

Remote Sensing Center, hereafter, NOHRSC) for the December 2023 through April 2024 period. A

few regions had above-normal snowfall, notably interior Oregon and Idaho and eastern Tennessee.

Figure 1: Summary of estimated winter 2023-2024 snowfall using NOHRSC 24h snowfall analysis data.

In terms of freezing rain, a few regions had one or more substantial freezing rain events

exceeding a quarter inch of flat ice. Figure 2 provides an estimate of the flat ice accumulations from

the Freezing Rain Accumulation National Analysis (FRANA) dataset. The FRANA estimate spans

the period from 17 January through 16 April 2024, plus a few selected cases from the winter prior

to 17 January.
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Figure 2: Summary of estimated winter 2023-2024 freezing rain (flat ice) using the Freezing Rain Accumu-
lation National Analysis (FRANA) dataset.

3.1 Overall Case Summary and Intensive Weeks

Overall, this year’s WWE season had periods of intermittent winter weather. A slow start to this

winter, with widespread above-average temperatures in the Eastern U.S., meant that many of the

cases selected occurred in January and February. In particular, mid-January brought an extended

series of winter cases across much of the continental U.S. with mixed precipitation and well-below-

normal temperatures for a brief time. From 1 December 2023 through 15 April 2024, a total of

25 cases were selected for analysis during WWE, with 9 cases (highlighted in bold in Table 1)

studied in-depth during three intensive WWE weeks. Operational and experimental forecast data

was collected for all the cases listed in Table 1 to compile seasonal verification statistics.

3.2 Other Notable Cases

Due to a major configuration change by the RRFS development team from a single- to mixed-physics

ensemble on 8 December 2023, early-season cases selected by HMT staff prior to this date were not

considered for seasonal analysis. These included some moderate lake-effect snow cases impacting
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Number Case Dates Location Case Type

1 18-19 Dec 2023 G. Lakes / C. Apps. Snow
2 7-8 Jan 2024 West Coast Snow
3 8-9 Jan G. Plains / G. Lakes Snow
4 9-10 Jan G. Plains / G. Lakes Snow
5 12-13 Jan G. Plains / G. Lakes Snow
6 13-14 Jan Pac. NW Snow, FZRA
7 14-15 Jan Northeast
8 15-16 Jan Mid-South / South-

east
Snow, FZRA

9 16-17 Jan Mid-Atlantic Snow
10 17-18 Jan Pac. NW / N. Rockies Snow
11 19-20 Jan Eastern U.S.
12 22-23 Jan Central U.S. FZRA
13 11-12 Feb S. Plains / H. Plains Snow
14 12-13 Feb S. Plains / MS Valley Snow
15 13-14 Feb Northeast Snow
16 16-17 Feb OH Valley / N. Mid-

Atl.
Snow

17 26-27 Feb Rockies Snow
18 1-3 Mar Sierras / G. Basin Snow
19 7-8 Mar C. Plains / H. Plains Snow
20 13-16 Mar C. Rockies Snow
21 22-24 Mar Northeast Snow, FZRA
22 24-25 Mar U. Midwest Snow
23 2-3 Apr U. Midwest Snow
24 3-5 Apr Northeast Snow
25 6-8 Apr Rockies Snow

Table 1: All cases span a 24 h valid time period from 12 UTC to 12 UTC, except for case 12 which ended
at 00 UTC 23 January. Rows in bold denote cases selected for in-depth study during intensive weeks. Cases
17 through 22 occurred too late in the season for evaluation in the intensive weeks, but were included in the
overall seasonal verification discussed in Section 5.3.

portions of the Great Lakes. Furthermore, several high-impact cases around the holidays, such as

the late December 2023 Dakotas ice storm, had RRFS model data outages preventing their use as

WWE case studies.

4 Experiment Data Summary

WWE participants evaluated a variety of experimental data, which are listed in Figure 3. As in

previous years’ WWEs, the development of the future Rapid Refresh Forecast System (RRFS) was at

the center of evaluation activities. The core of this system is a Limited Area Model (LAM) that has

the finite volume cubed-sphere (FV3) dynamic core. The deterministic flagship CAM, referred to as

the RRFSp1 or “m1” in Table 2 (also known as “RRFS A”), was still in active development during
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the winter season; thus, the deterministic and ensemble model configuration underwent numerous

changes during the season. More information about the experimental guidance that was evaluated

can be found in Figure 3. For more detailed descriptions of these products, please refer to Section

A of the Appendix.

Figure 3: Summary of ensemble, machine learning post-processing, and analysis datasets planned for eval-
uation in this year’s WWE.

5 Experiment Findings and Results

5.1 Experiment Format

This year’s WWE continued with the successful remote interactions of past WWEs and the hybrid

modality during two weeks of the 2023 Flash Flood and Intense Rainfall Experiment (FFaIR). The

team hosted three week-long WWE sessions during the weeks of February 12, February 26, and

March 11, 2024. The final experiment week in March was run in a hybrid format, with participants

in-person at NCWCP in College Park and online via Google Meet. As described above, experiment

activities were based on retrospective cases captured during the 2023-2024 winter season.

Intensive week attendees across the three weeks represented each of the four CONUS NWS

regions, as well as several NCEP centers and NOAA laboratories. Several university/academic part-

ners, including graduate students, also attended the intensive weeks. Figure 4 shows the geographic

diversity of the overall attendee list during the 14th WWE intensive weeks.
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Figure 4: Map of participant affiliations attending the 14th WWE intensive weeks. WFO polygons are color-
coded by total attendance counts according to the legend, while research lab and university attendance counts
are color-coded by their text box.

Session days were led by the WWE team roughly as follows: each day began with a brief

synoptic overview and forecast discussion to orient experiment participants to the forecast setting

and predictability challenges of a retrospective case study. The majority of the time was spent

analyzing forecast data and discussing the case in terms of footprint, amounts, and timing of winter

precipitation. During snow-focused cases, participants completed their own Maximum Snowfall and

Timing Product (MSTP) forecast consisting of a snowfall footprint, a highest amount contour based

on their confidence in the forecasts, and mark where they forecast the largest snowfall to occur

over the region of interest. During mixed precipitation cases, participants did a similar activity

forecasting freezing rain footprint, amount, and timing. As part of this activity, participants did a

complementary activity forecasting winter precipitation timing for several point locations of interest.

Along with plan view maps, participants used thermodynamic profiles from an interactive sounding

viewer tool to forecast onset and duration of winter precipitation or the timing of mixed precipitation

changeover in certain cases. Each case concluded with a verification activity and time reserved for

open-ended discussion of winter weather forecast challenges. Figure 5 shows the general structure

of one of the intensive weeks, with a mix of forecasting, evaluation, and discussion activities.

6



Figure 5: Schedule of activities during one of the 14th WWE intensive weeks.

5.1.1 Maximum Snowfall and Timing Product (MSTP)

In order to facilitate the NWS objective of increasing impact-based decision support services (IDSS)

activities, we have employed a number of exercises for our experiment participants. The MSTP

forecast activity has two objectives: 1. Give participants a reason to scrutinize various aspects of

the model forecasts and challenges, and 2. actually use the model or ensemble data to make specific

decisions. This activity allows forecasters to build a little knowledge on the utility of experiment data

for specific forecast issues like amount, timing, and location rather than just providing subjective

comments about the overall “goodness” of the snowfall. Feedback from developers has indicated

that statistics based only on the “goodness” of the forecast, though helpful, does not provide enough

information about the deterministic or ensemble model forecast. Developers are interested in things

like: if the model had the right idea but had the footprint shifted or if snowfall or freezing rain

amounts are too high or low. Along with the product, participants were required to fill out a survey

stating which deterministic or ensemble model they based their forecast on, why they forecast what

they did, and any other notes they felt might be useful. The MSTPs were evaluated and verified

subjectively and objectively using the MODE verification toolkit (Bullock et al., 2016) and NOHRSC

data (in freezing rain cases, against a new freezing rain analysis, FRANA. Details of this new analysis

will be discussed below).

The MSTP activity had participants draw a minimum snowfall (typically 1”) /freezing rain

(typically .01”) threshold or what we called the footprint. This allows HMT to verify the forecast
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and evaluate forecasts objectively on the low end. Participants were also asked to draw a Max

Contour threshold of their choice, highlighting the highest threat, or higher confidence or largest

areal coverage contour they felt was needed. Each participant was further asked to identify and locate

the maximum value of 24h snow or freezing rain they felt would occur for each event. Probabilistic

activities included participants recording the probability that 6”/24h or 0.25”/24h would occur for

snow/freezing rain, respectively. They also recorded a probability distribution for the maximum

snowfall/freezing rain. These activities provide a basis for estimating the utility or relative value of

the various models and their specific prediction which should complement objective verification.

5.1.2 Forecast Sounding and Precipitation Timing Activity

New this year, participants also used a mix of plan view forecast maps as well as forecast sounding

profiles in an activity designed to assess model thermodynamic profiles and relate them to plan

view maps of forecast winter precipitation type. HMT used model forecast information from BUFR

profiles at over 300 sounding site locations across the continental U.S. to display individual member

forecast profiles from the HREF and REFS ensemble members, including the HRRR, NAMnest, and

RRFSp1. An interactive sounding viewer webpage was created by HMT staff, using a code base

from collaborations with David Harrison and Israel Jirak at SPC, with sounding displays tailored

to winter weather forecasting including specific indices for winter weather.

For the activity, participants were given a list of sounding sites near and within the MSTP

regional domain for a specific intensive week case, and instructed to choose 3 sites to forecast for (first-

come, first-served). The forecast objectives included the onset and duration of winter precipitation

at specific forecast locations near and within the MSTP regional forecast domain. These objectives

were defined to capture different types of winter weather events. For example, in the case of an all-

snow event, the onset time would be the onset of any precipitation. In the case of rain transitioning

to a winter mixed precipitation event, the onset time would be the onset of freezing rain or snow as

the rain-snow transition reached a specific site. During the evaluation activity, participants used a

METAR precipitation-type viewer created by HMT to assess their site onset and duration forecasts.

While designed to get participants to think about the winter weather uncertainty at specific sites,

another objective of this activity was to generate conversation about other goals of this year’s WWE,

and drive discussion about SLR, p-type, freezing rain, snow squalls, and other forecast information

that heavily relies on sounding profile analysis.

Following the success of previous years, the WWE also hosted a seminar series with invited

presentations throughout the winter season, as shown in Figure 6. These presentations were hosted

on Google Meet on Tuesdays and Thursdays at 1 pm EST (1800 UTC) and advertised to all

NWS personnel. Presentation files were saved from each seminar, and are available on our HMT

seminar webpage under “2023-2024 Winter Weather Experiment (WWE) Seminars”.
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Figure 6: 14th WWE seminar schedule, with presentations during both intensive and non-intensive weeks.

5.2 Representative Cases

In this section, several cases are discussed that were studied during the WWE intensive weeks. The

selected cases represent high-impact winter weather events that capture some of the key themes and

forecast insights of this past winter’s experiment.

5.2.1 Southern Plains Ice Storm: 23 January 2024

During this event, precipitation was overrunning a shallow subfreezing airmass in place across the

Southern Plains to Midwest region during late January 2024. Precipitation mainly fell as liquid

(freezing rain or rain) and light mixed precipitation in the north, with some event-total flat ice

freezing rain accumulations of greater than 0.25 inches observed. Figure 7 shows FRANA estimated

flat ice amounts and local storm reports in the region studied as a WWE intensive case, focusing on

the swath of heaviest freezing rain from Oklahoma to Missouri.

Surface observations of precipitation type from selected areas were examined for this case

in and around the 0.25 inch flat ice areas. In many locations, unknown precipitation typing was
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Figure 7: Flat ice freezing rain accumulation estimated by FRANA for the 24h period ending 00 UTC 23
January 2024 (fill, in). Circles denote local storm reports of freezing rain according to the same color scale.

alternating with freezing rain, while other stations had more continuous bouts of freezing rain (Fig.

8). These time series depictions were used by participants to gauge the continuity and duration

(not shown) of the events during evaluation sessions. At most of the stations depicted, the rain

intensity was consistently light and intermittent and spotty thus emphasizing just how hard it can

be to predict these events.

The FRANA estimates of flat ice and freezing rain LSRs differ in their depiction of the freezing

rain in this case, especially northeast of the Ozarks (Fig. 7). Note: while LSRs shown are all assumed

to be reported as flat ice, it is possible that some are actually reports of radial ice (radial ice amounts

are less than flat ice). While the footprint of 0.01 inches of freezing rain is generally well-captured by

FRANA compared to the LSRs, there are greater differences in the reports for ice amounts greater

than 0.25 inches. Where FRANA estimates show a broad region of greater than 0.25 inches from

Oklahoma northeast to Illinois, relatively few LSRs had similar accumulations except in isolated

areas. This suggests that FRANA overestimated the flat ice amounts, particularly from central

Missouri northeast into Illinois.
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Figure 8: METAR precipitation-type time series for stations 1. OKC, 2. TIK, 3. PWA, 4. RVS, 5. OKM,
6. TUL, 7. CFV, 8. JLN, 9. SGF, 10. LBO, 11. TFN, and 12. FAM along with a map of their respective
locations relative to the FRANA 24h analysis (polygons contoured, dots marking local maximum in each
respective object). RA is rain, SN is snow, ZR is freezing rain, PL is ice pellets, and UP is unknown
precipitation.

For the three freezing rain cases examined in detail during the WWE intensives (January

14, 16, and 23: cases 6, 8, and 12 in Table 1), we found some common differences in the FRANA

estimates compared to LSRs. While FRANA often captured the ice footprint reasonably well,

it tended to overestimate the higher freezing rain amounts in some areas. Figure 9 summarizes

participant feedback on the FRANA performance across all three cases, in terms of footprint of flat

ice freezing rain (0.01 inches) and maximum amounts.

Explicit predictions of freezing rain QPF amounts were a new capability of the RRFS and

its ensemble members for the past winter season, so WWE examined several freezing rain events in

detail including this late January case. WPC-HMT also ran post-processing on the HRRR, RRFSp1,

and two other RRFS ensemble members, to generate forecasts of FRAM-adjusted flat ice amounts

from each of the CAM guidance, in addition to the raw freezing rain QPF fields available from each

model. We were thus able to examine the differences between the freezing rain QPF and FRAM

forecasts for multiple cases.

In this case, FRAM post-processing resulted in generally similar swaths of freezing rain com-

pared to the original freezing rain QPF fields as seen in Figure 10. However, there were some

increases in the footprint of light freezing rain (0.01-0.1 inches) on the northwest side of the FRAM
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Figure 9: Aggregate participant subjective ratings of 24h FRANA flat ice estimates compared to freezing
rain local storm reports (LSRs) across three freezing rain cases studied. Participants scored FRANA both
in terms of footprint (0.01 inches) and maximum amounts.

forecast, particularly in the Kansas and northwest Missouri area. The largest influence of using

FRAM was in the max amount of freezing rain forecast across the Ozarks, which resulted in about

a 10-20 percent reduction in the largest freezing rain amounts relative to the raw freezing rain QPF

amounts. Overall, using FRAM resulted in more accurate 24h freezing rain forecast swaths from

both HRRR and RRFSp1, both compared to FRANA and the available LSRs across the region.

Participant comments provided some more insight into the challenges the models had with

predicting this freezing rain event. While the HRRR and RRFSp1 were best among the guidance in

terms of the overall footprint and amounts, they still had challenges resolving some of the marginal

freezing rain areas across TX and AR. Participant survey responses indicated they tended to rely on

HRRR, RRFSp1, and the REFS ensemble probabilities in the forecast drawing activity. However,

the performance of other members like RRFSm2 and RRFSm4 sometimes suffered from greater low

or high biases in the maximum freezing rain amounts across the Ozarks (not shown) which may

have limited their usefulness.
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Figure 10: Model forecasts of 24h freezing rain QPF (center) versus FRAM-adjusted flat ice freezing rain
(right). Forecasts initialized at 00 UTC 22 Jan 2024, valid for the 24h ending at 00 UTC 23 January 2024.

The differences in the footprint and maximum amount swaths of freezing rain seen in this

January case across the Ozarks are representative of the types of adjustments the FRAM post-

processing provides compared to the raw freezing rain QPF field. In general, these differences

yield positive improvements in CAM forecasts of freezing rain swaths. Since the new capabilities of

the RRFS system added freezing rain QPF to the product output stream (in addition to HRRR,

which already did so), WWE was able to perform quantitative forecast and evaluation activities

for freezing rain for the first time, since other HREF members besides HRRR do not have explicit

freezing rain amounts predicted. We recommend that FRAM be added as a post-processing option to

RRFS/REFS to provide more comparable output guidance to what NWS WFOs and WPC forecast

for freezing rain amounts.

By using the deterministic and ensemble guidance provided to them, participants were gen-

erally able to make accurate forecasts of freezing rain footprint and maximum amounts. Objective

verification of participant MSTP forecasts for freezing rain was performed by assessing individual

forecasts against FRANA for this case, despite the biases with FRANA noted above in this event.

Performance diagrams shown in Figure 11 summarize the participant results.

Even considering the predictability challenges posed by freezing rain at CAM guidance lead

times, participants were able to forecast accurate freezing rain footprints at Day 2 and Day 1, with

CSI values around 0.75 for both activities. Maximum amount forecast contours did not verify as

well, with lower CSI values especially at Day 2. However, a number of participants achieved CSI

values greater than 0.2 at the Day 1 lead time for a freezing rain max amount contour of 0.25 inches

(warning-level ice amounts). In general, participants decided to draw for higher maximum amount
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Figure 11: Participant forecasts of 24h flat ice freezing rain 0.01 inch footprint and max amount for Day 2
(left) and Day 1 (right) lead times, verified against FRANA. Blue circles denote 0.01 inch footprint forecasts
while squares denote max amount forecasts, annotated by the value individual participants decided to
forecast at each lead time. All forecasts valid for the 24h ending at 00 UTC 23 January 2024.

values at Day 1 compared to Day 2, perhaps indicative of higher confidence in the model forecasts

at the shorter lead time.

The Day 1 participant example forecasts highlighted the very large area of freezing rain quite

well (Figure 12). The higher amounts of 0.25 and 0.5 each had unique challenges with areal coverage

in the main southwest to northeast oriented band and the sidelobe across AR. The model forecasts

showed areal coverage lower for the higher amounts, and shifted southward across southern IL. The

terrain effects in AR were captured well by participants, but the 0.5” max contour forecasts all

missed the heavy area in and northeast of St Louis into IL.

5.2.2 Ohio Valley and Mid-Atlantic Mesoscale Snow Banding: 16-17 February 2024

In an ongoing active weather pattern during mid-February, a low pressure system moved from the

Tennessee Valley eastward to Virginia on 16-17 February 2024. On the north side of this system,

several rounds of narrow mesoscale snowbands developed, impacting areas from St. Louis, Missouri,

eastward to north-central New Jersey with heavy snow. While overall snowfall and QPE totals were

relatively light across the region, several areas of localized snowfall amounts exceeded 6-10 inches in

24 hours. The most notable part of this event was the extremely high SLRs that were observed in

portions of Pennsylvania and New Jersey, exceeding 20:1.
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Figure 12: Example participant forecasts of 24h flat ice freezing rain 0.01 inch footprint (light purple contour)
and max amount (purple contour) for Day 1 lead times, verified against FRANA for A. and B. 0.25” forecasts,
and C-E. 0.5” forecasts. All forecasts valid for the 24h ending at 00 UTC 23 January 2024.

CoCoRaHS 24h observations across eastern Pennsylvania and New Jersey showed a small

band of enhanced precipitation exceeding 0.3-0.4 inches, with a broader region of 0.1-0.2 inches of

precipitation across the northern Mid-Atlantic. Combined with the enhanced SLRs and precipitation

falling as all snow, a narrow swath of 30-40 km in north-south extent (at the scale of a county or

less across eastern PA and NJ) was impacted by high snowfall totals with a few locations reporting

11-13 inches of snow. The small-scale nature of snow banding and snowfall amounts highlights the

predictability challenges posed for even CAM guidance in this event.

During this case examined in WWE intensive week 3 (March 11-15, 2024), we evaluated both

deterministic and ensemble model snowfall guidance at 2- and 1-day lead times to understand the

predictability of this event. Given the small-scale nature of the snow banding, individual models

struggled to accurately forecast both the magnitude and location of the heaviest snowfall amounts.

Figure 14 shows snowfall forecasts from two of the REFS members and the HRRR for several lead

times up until event onset.

While each of the models captured a swath of light to moderate snowfall exceeding 4 inches,

several key differences separated the HRRR and REFS members. RRFSp1 and RRFSm4 had the

heaviest snowfall forecasts at the Day 2 lead time (forecasts initialized at 00 UTC 15 February),

but decreased in magnitude while also shifting southward in the position of the west-east oriented

snowfall swath with decreasing lead time. These patterns also occurred in the QPF fields (not
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Figure 13: CoCoRaHS snowfall observations (inches) across eastern Pennsylvania and New Jersey, valid for
the 24 h period ending at 12 UTC 17 February 2024.

Figure 14: Variable density snowfall forecasts for the RRFSp1 (top row), RRFSm4 (middle row), and HRRR
(bottom row), for 24h snowfall valid at 12 UTC 17 February 2024. Each column depicts forecasts at different
lead times, for the same valid end time. NOHRSC snowfall estimates are shown for the same 24h period.

shown), indicating this was not just a SLR error. This generally resulted in larger forecast differences

relative to NOHRSC at short lead times. In contrast, HRRR overall had less snowfall than RRFSp1

and RRFSm4 at the 12 UTC 15 February lead time, but trended higher with overall snowfall amounts

as well as a northward shift in the west-east snowfall, especially towards the eastern portion of the

region in central Pennsylvania and New Jersey. By the “nowcast” lead time of 12 UTC 16 February,
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HRRR had the most snowfall of the models shown, even overpredicting snowfall in some areas like

the West Virginia mountains relative to NOHRSC.

To explore overall run-to-run trends in the individual REFS ensemble members for this case,

a JTTI funded project ran MODE object-based forecast verification metrics for each lead time as

shown in Figure 15, relative to the 24h NOHRSC analysis. This figure was provided by Tracy

Hertneky (National Center for Atmospheric Research). In each panel, the time series values indicate

attribute changes for each member relative to the previous forecast cycle. For the 90th percentile

of the snowfall object intensities (top row), the REFS members show little run-to-run consistency

but the variations decrease somewhat with decreasing lead time. For the displacement errors in the

forecast snowfall centroids, run-to-run changes also were large at longer lead times at both 1 inch

(lower left) and 4 inch (lower right) thresholds, but decreased with decreasing lead time. Other

differences are evident between members for this event, with some of the perturbed REFS members

exhibiting larger trends in their snowfall footprints than the control member, RRFSp1, which had

slightly greater run-to-run consistency for this event. For example, RRFSm4 (green lines) had an

eastward shift in centroid location at two consecutive forecast lead times of 42 and 36 h, whereas

RRFSp1 (black lines) had smaller displacement changes, or more run-to-run consistency overall.

Despite the magnitude and displacement errors in snowfall shown by the CAMs at Day 2 and

Day 1 lead times, analysis of other model fields and thermal profiles still highlighted the potential

for heavy snow and mesoscale snow banding in advance of the event. Figure 16 shows sounding

profiles at 06 UTC on 17 February in a north-south cross-section across the Mid-Atlantic from

model forecasts initialized at 00 UTC 15 February 2024, 30 h in advance of the event.

While the magnitude and north-south placement of forcing features for mesoscale snow band-

ing (e.g., a band of warm air advection at 700 hPa) varied across forecast cycles at Day 2 and Day 1

lead times between the HRRR and RRFSp1, they existed nearby a deep, saturated isothermal layer

around the 700-800 hPa level in the model sounding profiles, varying from -19 C at BGM to -11 C at

ABE in Figure 16. Many model forecasts, such as the 00 UTC 15 Feb RRFSp1, showed a brief but

robust signal for warm air advection and lift, but displaced too far south into Maryland instead of

where thermal profiles were more ideal for efficient snow growth in Pennsylvania. The best overlap

between thermal profiles and forcing wasn’t apparent until some of the last “nowcast” cycles of the

HRRR as the snow was beginning, where the warm air advection signal trended north (not shown).

This could help explain the underprediction of snow across most of the CAM guidance during this

event (Fig. 14) in Pennsylvania and New Jersey. The forecast uncertainty and displacement errors

in one or more ingredients for mesoscale bands of snow remains an open research question for NWP,

and/or post-processing, to better express high-SLR potential in cases such as this one.

In the last forecast cycle prior to event onset, the forecast environment from the 12 UTC 16

Feb 2024 HRRR initialization depicted a deep dendritic growth zone over the OH to NJ corridor
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Figure 15: Time series for REFS member consistency attributes at each forecast lead time prior to the 17
February 2024 snowfall event. Object-oriented attributes are evaluated relative to 24h NOHRSC snowfall
estimates. In all panels, line colors vary by ensemble member, while in the lower panels (bottom row) solid
lines indicate east-west centroid displacements while dashed lines indicate north-south centroid displacements
relative to NOHRSC. Figure provided by Tracy Hertneky.

(not shown) with forecast precipitation moving from west to east between 00-12 UTC on the 17th

(not shown). By 10 UTC on the 17th, the dendritic growth zone had filled with reflectivity and

shrunk from a depth of 2 km to just under 1.5 km (Fig. 17) but it was still present resulting in

(variable density) snowfall above 4” in a narrow band across PA and into NJ. The snow water

equivalent was uniformly above a quarter inch, with peak values just above half an inch in 6 hours.

The 6h snow to liquid ratio was generally in the range of 11-13 to 1. As mentioned earlier, the actual

observed snow ratios were above 20-25 to 1 with between 0.25 and .5 inches of precipitation within

the snow band. The HRRR values were only inconsistent with respect to SLR. The HRRR variable

density snow algorithm is only based on 2m temperature and is limited to between 8 and 17:1 (not

shown). For this case, the SLR is roughly a factor of two in error and is the most likely culprit

for the snow under-forecast. For the same initialization cycle and valid time, the corresponding

RRFSp1 has much reduced SLR (7-10:1) and almost half of the variable density snow (3-4”) and a

narrower swath of 0.25 inches of SWE, though not identical spatially, relative to the HRRR forecast.

The most obvious conclusion is that the mechanisms which govern SLR are poorly understood and

represented in the models discussed here.

18



Figure 16: Forecast sounding profiles at Binghamton, NY (BGM), Wilkes-Barre, PA (AVP), Allentown, PA
(ABE), and Baltimore, MD (BWI), valid at 06 UTC 17 February 2024. Colors indicate different model
forecasts: RRFSp1 (blue, highlighted), HRRR (red), NAMnest (green), and RRFSm2 (pink), all from
forecasts initialized at 00 UTC 15 February 2024. Thinner lines indicate soundings from the same models
but the corresponding 6-h time lagged forecasts. Also shown are (top left) NOHRSC 24h snowfall estimate
valid at 12 UTC 17 February 2024 and (bottom left) RRFSp1 700-hPa temperature advection (K/3h,
shaded), temperature (degC, blue dashed lines), height (dam, black lines), and wind (kts, barbs) from the
same model forecast and valid time as the soundings.

Due to the University of Utah research project studying ML post-processing for improving

SLR forecasts, HMT examined both raw SLR forecast fields from the RRFSp1 and ensemble and

the Utah ML SLR forecasts for each of the intensive week cases. The raw SLR technique used in

the RRFS members (ported from the HRRR) uses a SLR relationship varying between 8:1 and 17:1

depending on the lowest model level temperature (Benjamin and Collaborators, 2021). The Utah

SLR technique uses forecast fields from the RRFS model to predict an hourly SLR of its own, which

is combined with raw RRFS QPF forecasts to determine a new snowfall output for each member.

SLR and snowfall forecasts are shown in Figure 18 for this case study. In this example, Utah

ML SLR did not deviate much from the raw RRFSp1 SLR forecasts along the main snowfall axis

from Illinois into New Jersey, remaining around 12-15:1. However, Utah ML SLR values exceeded

the narrow bounds of the RRFSp1 SLR (capped between 8:1 and 17:1) especially in the Great

Lakes region where some modest lake-effect snow was forecast. In contrast to the deterministic

forecast, the Utah ML ensemble minimum and maximum SLR fields showed large variations in SLR

between REFS members (minimum and maximum of the 6 members from a single initialization
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Figure 17: Northeast regional depiction of the HRRR forecast initialized 16 Feb 2024 12UTC for forecast
hour 22 valid 10UTC 17 Feb 2024 for A. 263K reflectivity (shaded, dBZ) and dendritic growth zone depth
(contours, m), B. variable density snowfall (in), C. snow water equivalent (in) and D. snow to liquid ratio,
shading referenced in each panel’s colorbar.

cycle, no time lagged membership). When combined with the individual members’ QPF differences

(not shown), the spread in Utah SLR forecasts led to large differences in ensemble minimum and

maximum snowfall forecasts in this case.

In addition to the deterministic model forecasts and forecast trends, we also examined ensem-

ble consensus products such as arithmetic means and probability matched means (PMM) for this

case study. An example of the differences between the two for REFS forecasts at a Day 2 lead time

is shown in Figure 19. While the arithmetic mean fields generally show the synoptic signal for a

band of snowfall across the Ohio Valley and Mid-Atlantic, the details are smoothed relative to the

verifying observational analyses. This is expected given member-to-member differences at a Day 2

forecast lead time. In contrast, the PMM technique better captures some of the higher-end snowfall
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Figure 18: SLR and snowfall output from the RRFSp1, Utah ML control forecast based on RRFSp1 inputs,
and the Utah ML ensemble min and max, all from forecasts initialized at 00 UTC 15 Feb 2024. Reflectivity
and SLR panel forecasts are valid at 06 UTC 17 Feb 2024 (f54) while 24h snowfall panels are valid at 12
UTC 14 Feb 2024 (f60).

and QPF signal of the west-east translating swath of heavy snow greater than 4 inches, although

the forecast maxima by REFS are still less than what was estimated by NOHRSC (except in the

upslope snowfall region in West Virginia as well as the Great Lakes lake-effect snow belts).

For REFS forecasts initialized 24 h later (Day 1 lead time), some of the mesoscale details

were in greater focus as shown in Figure 20. In comparison to Fig. 19, both the arithmetic mean

and PMM QPF and snowfall amounts trended higher in the later forecast initialization on the 16th.

While still low-biased and shifted about 50 km too far south compared to the observed snowfall axis,

the REFS ensemble consensus products trended in the right direction from the Day 2 to Day 1 lead

time. Also, the differences between the arithmetic mean and PMM are less at the Day 1 lead time

(Fig. 20), indicating less spread between the individual REFS member solutions.

In addition, the CAPS group provided their FV3 ensemble (Fig. 42) and ensemble consensus

forecasts initialized at 00 UTC for each lead time during this case, with forecasts extending out to Day

3. New this year, we evaluated the spatial aligned mean (SAM) and spatial aligned mean combined

with local probability-matched mean (SAM-LPM) techniques (Lee et al., 2024). An example of

CAPS’s different ensemble products for snowfall at 6h intervals is shown in Figure 21.

Overall, the Day 3 CAPS ensemble consensus products were generally able to capture the

extent of the snowfall footprint, with some spatial errors, despite the predictability challenges in

this event. However, the consensus products all underrepresented the maximum snowfall amounts,
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Figure 19: REFS 24 h QPF and variable density snowfall means, forecast initialized at 12 UTC 15 February
2024 valid at 12 UTC 17 February (forecast hour 48). Arithmetic means are shown in the left column
while probability matched means are shown in the right column, for QPF and snowfall. MRMS QPE and
NOHRSC estimates are shown for comparison, valid for the same 24 h period.

Figure 20: As in Fig. 19, but for REFS forecasts initialized at 12 UTC 16 February 2024.

with the arithmetic mean smoothing out the snow signal the most. Both the methods applying the

local probability-matching technique (LPM and SAM-LPM) fared the best, retaining more of the

higher-end forecast snowfall amounts in excess of 6 inches. While the SAM and SAM-LPM had more

of a signal for a mesoscale snowband across eastern Pennsylvania, they also struggled to capture the

southern extent of the heavy snow at this forecast hour across the central West Virginia mountains,

relative to the other means.
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Figure 21: CAPS ensemble consensus products for 6h snowfall, from forecasts initialized at 00 UTC 14
February 2024, valid at 06 UTC 17 February. NOHRSC 6h snowfall estimates are also shown at left.

During this event, the SAM technique didn’t seem to substantially improve on other methods

like the LPM. This may be due to more member-to-member consistency in banded snow placement

across the CAPS ensemble, limiting the realignment of the individual member position differences

for a winter weather case. Forecaster comments varied as to what aspects (snowfall footprint or

maximum amounts) they valued most in the consensus fields, and which mesoscale aspects they

focused on, from the synoptic snowfall to the lake-effect bands also present in this case. From the

Day 3 to Day 1 lead times, participants generally favored the SAM-LPM for 6h snowfall since it

improved on some attributes of the forecast over the other techniques. However, many participants

noted that the consensus products underestimated the maximum amounts in the synoptic snow

region in the Mid-Atlantic and also struggled to capture the mesoscale details of the lake-effect snow

bands. This is unsurprising as much of the deterministic guidance (e.g., Fig. 14) also underforecast

the lake-effect potential, especially downwind of Lakes Erie and Ontario.

Considering the range of deterministic and ensemble guidance available to participants during

the snow forecasting activities, select MSTP forecasts for this event showed (Fig 22) forecasters

accurately depicting the footprint and choosing maximum contour amounts above 4”. All forecasters

chose to depict the Appalachian Mountain maximum generally and 3 of the 5 further emphasizing

a band of heavier snow across PA and NJ, and 2 of the 5 adding a band across OH, and 3 of the 5

adding a lake-effect band off of Lake Ontario and/or Lake Erie. These forecasts were in part driven
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by multiple models, since participants had access to a range of experimental forecast guidance as

discussed throughout this section.

Figure 22: Select forecasts from the MSTP exercise showing contours for footprint (1”, green) and maximum
amount (lighter green) for forecasts with A. 6 inches, B: 4 inches, C. 6 inches, D. 8 inches and E. 6 inches
of snow with performance metric table emphasizing the ”maximum amount” contour. The underlay in A-E
is the NOHRSC 24h snow analysis contoured according to the color bar.

5.3 Objective Verification

Since a total of nine cases were evaluated in detail across the three intensive weeks, we collected case

data for an extended period during the 2023-2024 winter season. The larger set of snowfall cases used

for objective verification in this section (cases 1-22 in Table 1) covered a total of thirty-two unique

24 h verification days, since some cases spanned multiple days or overlapped in different regions

of the CONUS on the same day. Cases were chosen to span a variety of geographic regions and

synoptic and mesoscale phenomena, to the best of our ability given the limited amount of snowfall

that fell in the CONUS outside the mountains during the 2023-2024 winter season (Fig. 1). The

period of time chosen for objective verification was also constrained by the extensive ongoing RRFS

development efforts, so we limited our analysis to the winter period with the fewest changes to the

RRFS ensemble.

Object-based verification at Day 2 and Day 1 lead times was performed using MODE (Bullock

et al., 2016), comparing model forecasts of 24 h variable density snow to NOHRSC snowfall estimates.

Since HREF members other than HRRR do not output variable density snow, we limited our analysis

to the HRRR, RRFSp1, and two perturbed REFS members all using the same technique (rather
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than introducing SLR assumptions varying by model). Objective verification was performed over

the full CONUS domain covered by NOHRSC.

Day 2 verification results in performance diagram format are shown in Figure 23. The highest

critical success index (CSI) values around 0.5 occur at a snow threshold of 1 inch, with lower CSI

values and increasing bias at the higher snow thresholds. Compared to the REFS members at 00

and 12 UTC, the 12 UTC HRRR had the highest probability of detection (POD) but also slightly

higher bias at each threshold. Differences in forecast performance between the 00 UTC and 12 UTC

REFS members are most evident at the 12 inch threshold, with the 12 UTC forecasts performing

better in terms of CSI.

Similar to the Day 2 verification, Day 1 verification performance diagrams are shown in Figure

24. Relative to the results of the Day 2 verification, snowfall performance in terms of CSI and bias

for each of the models is improved at the 1, 4, and 6 inch thresholds. However, the cluster of

model forecasts remains around a CSI of 0.2 at both Day 2 and Day 1 lead times. While HRRR

and RRFSp1 performance remained relatively consistent across each threshold and forecast cycle,

RRFSm2 and RRFSm4 varied in performance across the Day 1 forecasts as they were occasionally

the worst or best member of the four models verified in terms of CSI.

Between the two deterministic “flagship” models, HRRR had slightly higher CSI than RRFSp1

for Day 1 snowfall across the thresholds, but at the expense of higher bias. The gap in perfor-

mance between RRFSp1 and HRRR increased for higher snowfall thresholds, with RRFSp1 worse

at thresholds greater than 6 inches. However, these results should be noted in context of this win-

ter not having many heavy snow events outside of the mountainous western U.S. Finally, there

is a systematic high bias in snowfall forecast for both HRRR and REFS members at

higher thresholds (> 6 in.) which may indicate a mismatch between the model variable

snow density snowfall field we are verifying against NOHRSC snow depth. That is,

NOHRSC estimates may account for snowfall settling or other observed factors that

the model-predicted field does not.

Due to substantial issues with missing REFS member data for individual forecast cycles

and cases, we were unable to run an objective evaluation of ensemble probabilistic data for the

WWE cases this winter. Instead, we highlight ensemble probabilities and consensus products from

individual cases that were generally representative of notable positive or negative qualities found

during the experiment.

5.4 Subjective Evaluation

During each intensive week, participants were tasked with evaluating model snowfall predictions

after each set of case study forecast activities. These evaluations focused on rating the 24 hour
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Figure 23: Seasonal MODE object-based verification for several 24h snowfall thresholds for Day 2 determin-
istic model forecasts: HRRR (star), RRFSp1 (cross), RRFSm2 (triangle), and RRFSm4 (pentagon). Results
are color-coded by forecast initialization cycle with dark blue denoting 00 UTC and green denoting 12 UTC
forecasts.

variable snow density snowfall (variable “asnow” in the GRIB2 output fields), from each of the

CAMs that provided explicit variable density snowfall forecast output as in the HRRR (Benjamin

and Collaborators, 2021). Given this choice, we focused evaluations on the HRRR, RRFSp1, and

two other REFS members (RRFSm2, RRFSm4), as well as the CAPS control member and Utah ML

snowfall forecast, since these CAMs all had the desired snowfall output. Participants were also able

to evaluate ensemble consensus products, including the REFS mean snowfall and CAPS ensemble

probability matching fields (PMM/LPMM). By focusing on variable density snow, this meant that

we omitted evaluation of deterministic models which did not have variable density snowfall available
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Figure 24: As in Fig. 23 but for Day 1 forecasts.

as part of their output (e.g., NAMnest, GFS), which would have required introducing other SLR

assumptions (e.g., liquid equivalent snowfall multiplied by a fixed 10:1 SLR to obtain snow depth, or

positive accumulated snow depth change by the land surface model). Hereafter, discussion of model

“snowfall” refers to variable density snowfall.

During our verification sessions, participants compared the CAM snowfall forecasts at several

different lead times to the corresponding NOHRSC 24 hour snowfall analysis. MODE was used on

the variable density snowfall field at many snow thresholds. Participants were asked to consider

the full-CONUS objective statistics as part of their subjective evaluations of each model, while also

focusing on the mesoscale forecast domain of interest for each case study.
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To evaluate model snowfall forecasts against NOHRSC gridded snowfall estimates, partici-

pants used the interface shown in Figure 25. MET/MODE was used to provide object-oriented

verification statistics as described in section ”Objective Verification”. Participants were asked to

provide subjective evaluations of each of the primary model 24 h snowfall forecasts, focusing on 00

UTC initialization times for the Day 2 and Day 1 periods. A screenshot of the MODE snowfall

evaluation webpage is shown in Figure 25.

Figure 25: Example of web interface that participants used to evaluate deterministic model 24h snowfall (left
panel) against NOHRSC gridded estimates (center panel), with MODE-based object-matching performance
statistics (right panel). Participants were able to select different models, lead times, forecast cycles, and
verification thresholds using the dropdown menus.

Figure 26 shows overall participant ratings for the 24 h snowfall for several deterministic

models, aggregated across the nine snowfall cases examined across the intensive weeks. At Day 2

lead times, rating results were more similar across all of the forecast models. RRFSp1 scored highest

(mean score of 2.57), followed by CAPSdet (3.01) and HRRR (3.33). Participants compared models

across the 00 and 12 UTC cycles, since CAPSdet and Utah were only available at 00 UTC while

HRRR was only available at 12 UTC (48 h lead time).

At Day 1 lead times, HRRR (2.64) and RRFSp1 (2.30) emerged as the consistently highest

rated models according to the participant surveys. The other REFS members we examined, RRFSm2

and RRFSm4, performed worse than the RRFSp1 control member. The CAPS control member

(CAPSdet) and Utah ML SLR (based on the RRFSp1 model output) snowfall forecasts were rated

lowest. Interestingly, the CAPSdet forecast was rated lowest at Day 1 even though it was second-

highest at Day 2 lead times. Since CAPS forecasts were cold-started from GEFS initial and boundary
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conditions, this might have put them at a disadvantage for shorter Day 1 lead times compared to the

other forecasts which use radar data assimilation.

Figure 26: Aggregate statistics for participant rating of 24h snowfall forecasts.

In addition to the participant ratings of each model snowfall forecast, participants were also

asked to rank each model compared to the others. Overall results from this ranking are shown in

Figure 27. Similar to the rating results, HRRR and RRFSp1 were generally comparable at Day

2 lead times but with RRFSp1 having a slight edge (RRFSp1 mean ranking of 2.31 versus HRRR

mean of 3.25). RRFSm2 had more of a bimodal ranking distribution than the others but was the

lowest-ranked member at Day 2.

At Day 1 lead times, HRRR and RRFSp1 were ranked as the best models among the group.

RRFSp1 again had a slight edge over HRRR, since it was rarely ranked as the worst or second-worst

model.

Since overall rating and ranking results are only able to capture broad impressions of model

”goodness”, we asked participants to elaborate on other positive qualities of the model forecasts in

a binary checkbox matrix format. These attributes included overall coverage of snowfall at various

thresholds (1, 4, and 6 inches), location accuracy of the snowfall areas (1, 4, and 6 inches), and

the forecast maximum amount, all compared to NOHRSC 24h snowfall estimates. Figure 28 shows
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Figure 27: Aggregate statistics for participant ranking of 24h snowfall forecasts.

these results, normalized by count. A value of one indicates that a model was evaluated to always

have a given quality, while a value of zero indicates that a model never had that quality.

Overall, at both Day 2 and Day 1 lead times, models generally had an easier

time capturing lighter snowfall amounts, with higher frequencies of positive qualities

(coverage/location) at 1 inch of snowfall than 6 inches. At Day 2, RRFSp1 slightly

outperformed HRRR at most of these attributes in terms of snowfall coverage and

location. At Day 1, RRFSp1 and HRRR were more equally matched in terms of the

attributes we evaluated.

5.5 Discussion Topics

In this section, we discuss major themes that emerged from the variety of snow,freezing rain, and

winter mixed precipitation cases examined during the WWE intensive weeks. Some subsections

summarize the range of conversations and discussion we had about certain topics, while others

offer representative case examples to illustrate specific attributes or biases we noted in the model

guidance.
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Figure 28: Aggregate statistics for participant assessments of positive qualities in the deterministic 24h
snowfall forecasts.

5.5.1 Snow-to-Liquid Ratio Techniques

During the experiment, forecasters were interested to learn about the simple SLR techniques used

natively in the HRRR and RRFSp1 variable snow density snowfall accumulations as these are not well

known. Intensive week cases examined the SLR differences between the Utah ML methods and the

raw HRRR and RRFSp1 SLR fields in a variety of geographical and thermodynamic environments,

from warmer, mixed-precipitation cases in the Central Plains to the higher-SLR cases found in the

Mountain West and Great Lakes (lake-effect snowfall). Overall, the Utah ML SLR methods were

able to forecast a wider range of SLR amounts, producing a larger range of snowfall forecasts as

in the February 17 event in the Northeast (Fig. 18). Despite this spread, sometimes the most

anomalously high SLR values were not well forecast.

Another case from 12 February 2024, where heavy wet snow occurred across northern Texas

and Oklahoma, highlights an extreme example of some issues we noticed after evaluating the Utah

SLR products across several similar events. Figure 29 shows a comparison of 1 h SLR and 24 h

snowfall amounts between the RRFSp1 and Utah ML control forecast (based off the RRFSp1 fields).

This case featured a compact upper low which produced heavy precipitation rates leading

to snowfall, despite a marginal thermal environment with near-surface temperatures around 0 ◦ C

(not shown). The SLR comparison in Figure 29 shows RRFSp1 SLRs across Oklahoma static at 8:1
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Figure 29: SLR and snowfall output from the RRFSp1, Utah ML control forecast based on RRFSp1 inputs,
from forecasts initialized at 00 UTC 11 Feb 2024.

(the lower limit of the native model SLR) while Utah SLRs vary between <5:1 and 10-12:1 across

Oklahoma and the Texas Panhandle. In addition, there are substantial jagged artifacts in the Utah

SLR, which somewhat resemble topographical contours from west Texas to the Ozark Mountains

but appear erroneous as they varied from hour to hour (not shown). The summed differences in SLR

between RRFSp1 and the Utah ML forecast lead to substantial differences in the maximum snowfall

forecasts across the area (Utah forecast a much larger area of 8 inches), despite relatively similar

1 inch snowfall footprints between the two deterministic solutions. NOHRSC snow estimates (not

shown) indicated that both forecasts were overdone in terms of max snowfall amount and footprint,

with reality closer to the RRFSp1 solution.

Given the predictability challenges of the heavy snow rates and snowband locations in a

marginal thermal environment, forecasters were generally understanding of the model to model

discrepancies at the Day 2 and Day 1 lead times during this case, preferring the models with

the most accurate 1 inch footprint area. Some representative comments sum up their subjective

impressions of the model guidance during evaluation. One participant said, “Overall, most of the

models had a decent handle on the location and coverage of the >1” snowfall. However, all models

poorly handled both the location and coverage of the maximum snowfall amounts.”. Another offered

perspective on the RRFSp1 and Utah ML overpredictions for messaging, writing “the RRFSp1 did

a bit better perhaps with the general location of 1”+ snowfall. Combined, they were useful and

probably all that was needed for the event. I also felt the [Utah] deterministic was useful for worst

case scenario forecasting and estimating a high end amount as even though it was overdone for the

max amounts, the footprint of 1”+ was still useful.”
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Across the intensive week WWE cases, forecasters generally found relatively small differences

between the Utah ML and raw RRFS snowfall forecasts, despite occasionally large differences in

instantaneous SLR in certain cases. The Utah ML was often competitive with or slightly worse

than RRFS overall. When the Utah ML snowfall performed well, participants found it was more

accurate and useful for forecasting snowfall footprint amounts rather than the snowfall maximum

contour, since the Utah ML method tended to be somewhat biased high on max snowfall amounts.

Knowing that the model was trained on data from the Western U.S., participants expressed some

hesitation to trust the Utah ML forecasts for intensive week cases in the central and eastern regions

where more mixed precipitation types were present, noting some biases. One representative quote

mentioned “I would really like to know more about the application of the Utah MLP SLR with more

cases. SLRs can be critical to getting a forecast right, and the central US case ... really showed the

potential value it could have for mixed precipitation events. There were certainly times where there

were odd signals over terrain and within mixed precipitation zones. I’d like to see more cases before

increasing my confidence.”

5.5.2 Freezing Rain and FZRA Post-Processing

During the intensive weeks, we were able to discuss and compare quantitative freezing rain forecasts

from HRRR as well as the RRFS members, which all had the HRRR freezing rain algorithm imple-

mented in their output (Benjamin and Collaborators, 2021). In addition, the REFS had new freezing

rain QPF probability forecasts which we examined during each of the intensive week freezing rain

cases (the HREF has no corresponding probability field).

In a Western U.S. case from January 14, 2024, we discussed excessive freezing rain probabilities

in the REFS over the higher elevations of the mountain west, as shown in Figure 30. With light

reflectivity in the RRFSp1 forecast, forecast soundings from the RRFSp1 and other REFS members

in northern Nevada (WMC) did not seem to indicate classic freezing rain profiles, unless there was

freezing drizzle over the higher mountain peaks. P-type algorithms categorized these profiles as

snow, not freezing rain. Given this setup, REFS ensemble probabilities of categorical freezing rain

seemed excessively high. These freezing rain probabilities also were suspect because participants

noted that the mountain west rarely receives freezing rain per climatology (e.g., McCray et al.,

2019).

While not an intensive week case, another highly impactful mixed precipitation event from

23-24 March 2024 illustrates the overall utility of the REFS freezing rain QPF probability fields.

Figures 31-32 show two different REFS forecasts 24 h apart, to depict how the probabilities evolved

with decreasing lead time.

Overall, the REFS forecast probabilities generally capture the spatial pattern of the FRANA

observed ice accumulations. REFS forecasts from 21 March (Fig. 31) have high probabilities ex-
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Figure 30: Example of light freezing rain accumulations, from REFS forecasts initialized 00 UTC 13 January
2024, valid at 12 UTC 14 January (f36). (left) RRFSp1 composite reflectivity. (center) REFS categorical
probabilities of freezing rain. (right) Forecast soundings at Winnemucca, Nevada (WMC), with RRFSp1
highlighted in blue.

Figure 31: REFS forecasts of 12 h freezing rain QPF probabilities, model initialized at 18 UTC 21 March
2024. Note that FRANA observation for 24 h flat ice accumulations are valid ending at 06 UTC 24 March
2024, spanning the two 12 h forecast periods from the REFS guidance.

ceeding 60-70% of 0.1 inch in 12 h over the region impacted, from New York through Maine, with

moderate probabilities of 0.5 inch (especially in Maine). A day later, both thresholds of probabilities

have increased in magnitude as forecast lead time and ensemble spread decrease. REFS probability

forecasts of freezing rain exhibited a small northward bias at both lead times, since the highest

observed freezing rain totals estimates and LSR observations were across the region from Albany,

NY, to Portland, ME. Magnitudes of higher-end freezing rain probabilities (0.5 inch in 12 h) were

also relatively high, but considering that freezing rain QPF is typically an overforecast compared
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Figure 32: As in Figure 31, but for REFS forecasts initialized at 18 UTC 22 March 2024.

to what accretes on surfaces (Sanders and Barjenbruch, 2016), forecast probabilities may not have

been as high-biased as they appear. Given that NWS WFOs and WPC create freezing rain forecasts

based on flat ice accumulations, HMT recommends that FRAM post-processed probabilities from

REFS should match that of operational outputs and would be of even greater value to operations,

perhaps in place of the raw freezing rain QPF probabilities that were examined during last winter’s

WWE.

Discussions during the WWE intensives also focused on freezing rain observations and the

FRANA dataset. After evaluating FRANA for one freezing rain case during each intensive week,

participants were asked to summarize their impressions of FRANA in an open-ended question in a

survey sent to the participants after the intensive week ended. While the intensive week was the first

time many participants had examined FRANA, several people mentioned that their assessment was

based on more than one case since they had been able to assess FRANA in an event impacting their

local area. Figure 33 summarizes subjective assessments of FRANA performance and operational

utility from the participants, where the survey asked people to rate FRANA based on its potential

use as an observational dataset and nowcasting tool (the latter being a thought experiment, as HMT

did not have a nowcasting activity using FRANA during WWE). Overall, participant feedback was

primarily positive regarding FRANA performance as an observational dataset during the WWE

cases, with about a third of the participants assessing that FRANA was ready for operational use

alongside other data sources, albeit with some need for additional calibration and modest devel-

opment (focusing on addressing the high bias found in FRANA for higher freezing rain amounts,

compared to freezing rain LSRs).
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Figure 33: Subjective assessments of overall FRANA quality from end-of-week surveys sent to participants.

Participants were able to expand on their subjective ratings in the survey, describing some

of the positive and negative qualities of FRANA in short-answer responses. Overall, participants

thought FRANA would be useful alongside other data, such as ASOS and LSR freezing rain amounts,

with one person stating, “FRANA did very well with the depiction of ice... on our case. It nailed the

area, and generally got amounts correct. Personally, I would put this into operations along with other

data. Even if it needs more calibration/development, it’s a tool that we’ve never had, but wanted

for some time. Admittedly, I’m providing input based on one case, but I think getting eyes on it on

a regular basis will hasten any improvements it may need.”. Other remarks focused on the need for

additional calibration to improve noted biases seen in individual cases, for example, “Across many

locations, I remember there being a large difference between the FRANA compared to observations,

with a large high bias or a large low bias so it is hard to conclude which one was more prevalent.

There would definitely need to be more case studies done to find why these biases occur.”. Finally,

participants were more hesitant to trust FRANA in certain regions with sparse radar coverage or

beam blockage such as the mountainous western U.S. These factors included both the lack of freezing

rain observations in mountainous areas as well as uncertainty in the MRMS-derived precipitation,
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with one participant stating, “FRANA performed well in locations with adequate radar coverage

and ground truth. I don’t see this working well in areas where one or both of those are missing

because that has been true for other MRMS products. I do think as an observational dataset it

has enough utility to begin use outside of a lab/development setting, but it will need improvements

before it works over a wider domain...”.

5.5.3 Model Soundings

The development efforts that HMT staff worked on for the sounding viewer tool paid off in several

ways, including the site-specific precipitation onset timing and duration activity discussed previously.

Figure 34 shows a composite summary of the subjective participant evaluation results of their own

performance at diagnosing wintry precipitation onset time from their Day 2 and Day 1 forecasts

at three individual sites, where they used MRMS and time series of ASOS observations to verify.

Even considering the subjectivity of these results, participants indicated that they were able to

determine the winter precipitation onset time within an hour over 40% of the time, with a roughly

symmetric distribution around the “less than 1 hour offset” bin. The second-most common result

was an assessment that “no winter precipitation” fell at a site. This result was expected because

the HMT team intentionally picked some sites outside of the winter precipitation area in the MSTP

exercise, to make participants think critically about whether the profiles matched expectations of

winter precipitation (or any precipitation) in the model guidance.

Figure 34: Combined results from the Day 1 and Day 2 winter precipitation onset timing verification activity,
where participants subjectively rated their forecast onset times at each of their three sites. Negative values
indicate a forecast onset time later than the observed onset time, while positive values indicate a forecast
onset time earlier than the observed onset time.

In addition, we diagnosed several model physics oddities among the REFS members since EMC

provided sounding profile data from each member starting in January 2024. One consistent example
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was a surface-based nocturnal cold bias in two of the REFS members (RRFSm2 and RRFSm5),

which we noted happened only where snow was already on the ground or after snow had fallen

during the model forecast. We hypothesize that RRFSm2 and RRFSm5 (see Table 2), the only

two members that used the GFS planetary boundary layer and surface layer (PBL/SL) land surface

model scheme during the winter of 2023-2024, suffered from the cold bias over snowpack as a result

of using that particular PBL/SL scheme. An example of the cold bias is shown in Figure 35, where

forecast soundings at Caribou, Maine, over existing snowpack were about 10 ◦C too cold in the

lowest 50 hPa relative to the observed sounding on 1 February. HMT communicated this feedback

to EMC by April 2024 and they replied that they were working on a fix.

Figure 35: Observed (left) and REFS forecast sounding profiles (right) at Caribou, Maine (CAR), valid at
1200 UTC 1 February 2024. RRFSm2 (blue, highlighted) as well as RRFSm5 (orange) forecast profiles are
the ones with a near-surface cold layer. REFS forecasts were from the cycle initialized 00 UTC 31 January
2024. NOHRSC snow depth valid at the same time is shown as an inset panel.

Other uses of the sounding viewer were to integrate past testbed research products such

as the Spectral Bin Classifier into the sounding processing routines, for display of detailed p-type

information during the WWE intensive weeks. We had valuable discussion about different methods

of diagnosing p-type, their utility, and some new ideas for visualizing p-type uncertainty, all in the

context of evaluating ongoing products under development like FRANA. In the future, HMT plans

to continue developing the sounding viewer displays to integrate additional quantities such as SLR

to facilitate discussion of ongoing research products. Figure 36 shows an example of the sounding

viewer during the mid-February 2024 event discussed in the case study section, that we used to

better understand SLR forecasting challenges.
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Figure 36: Forecast soundings at Allentown, PA, from HRRR (pink), NAMnest (green), and RRFSp1 (blue)
forecasts initialized at 00 UTC 15 Feb 2024, all valid at 06 UTC 17 Feb 2024 (f54).

Plan view maps of dendritic growth zone (DGZ) depth were called into question for a 15

February 2024 case since the RRFSp1 had multiple layers where temperatures crossed the -12C

mark (Figure 37). The DGZ depth algorithm appears to assume only 1 possible layer, identifying a

first occurrence at or below -12◦C and a final occurrence where the temperature profile falls below

-16◦C. The warmer layer, centered near 700 hPa in the example, is thus counted as part of the depth.

A more useful algorithm would potentially need to be designed to capture multiple DGZs and either

sum the layers, or only count those layers which proceed to be colder than -16◦C. This could make the

DGZ depth a more reliable variable in understanding the DGZ and its role in potentially enhancing

SLR and thus snowfall.

5.5.4 Ensemble Consensus Fields - Neighborhood Probabilities and Probability-Matched

Mean (PMM/LPMM)

During the experiment, we often discussed the utility and value of ensemble probabilities. This often

included gathering feedback on the radius of influence used in the EMC-produced REFS ensemble

probabilities. Figure 38 shows an example of the neighborhood probabilities of 1 inch and 6 inches

of variable density snow in 6 hours, from REFS forecasts initialized at 12 UTC 16 January 2024.

The EMC-produced probabilities for the winter used an 18 km radius of influence to perform the

smoothing. In this case, the neighborhood probabilities highlighted the potential for heavy snow
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Figure 37: Forecast soundings at Philadelphia, PA, from REFS members, and RRFSp1 (red, highlighted)
forecasts initialized at 00 UTC 15 Feb 2024, all valid at 13 UTC 16 Feb 2024 (f37).

across the higher terrain of the Pacific Northwest, but showed high probabilities of 1 inch of snow

for most of the region including the lower elevations of interior Oregon and Washington.

Figure 38: Neighborhood probabilities of (left) 1 inch and (right) 6 inches of variable density snow in 6
hours, from REFS forecasts initialized at 12 UTC 16 January 2024 valid at 00 UTC 18 January (f36).

Overall, some participants noted that it was more difficult to use the probability fields over

the Western U.S. since any smoothing makes it difficult to account for impacts in the complex

terrain relative to valley locations. We discussed whether other approaches would be useful for
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visualization, such as unsmoothed gridpoint probabilities or having more than one set of probabil-

ity fields (i.e., having at least two different radius of influence smoothing options) for mountainous

and non-mountainous areas. Other comments discussed the utility of viewing ensemble informa-

tion in complementary ways for forecasting and IDSS messaging, such as time series diagrams and

probability distributions for individual locations.

Overall, the majority of forecasters enjoyed viewing the REFS probabilities for variable density

snowfall and freezing rain, alongside the guidance from the deterministic forecasts. One forecaster’s

summary describes the tone of the positive feedback: “During the experiment, I primarily looked at

the variable density snowfall probabilities and was satisfied with them as a whole. I would use these

in an operational setting. I also found the freezing rain probabilities to be extremely valuable when

evaluating the freezing rain impacts in the forecast.” The participants found more utility in using the

ensemble probabilities as a guide for drawing footprints of snowfall (1 inch) and freezing rain (0.01

inch) during the MSTP activity, while relying on other guidance to key in on higher precipitation

amounts for each intensive case. Deterministic forecasts and consensus products, such as REFS

variable density snow PMM, were more generally used by participants to investigate maximum

amounts, as discussed previously in the February 17 case (Section 5.2.2).

Participants also had the opportunity to investigate ensemble probability and consensus prod-

ucts from the CAPS FV3-LAM ensemble, using them for the MSTP activities and evaluating them

during the verification sessions. Feedback on the CAPS consensus products was mixed, as many of

the techniques ended up producing broadly similar 6h forecasts to each other in the cases we focused

on during the intensive weeks (e.g., Fig. 21). Of the techniques examined (arithmetic mean, LPM,

and SAM), participants generally favored consensus products using the LPM since that method

tended to best preserve snowfall maxima as seen in the individual deterministic forecasts.

5.5.5 Visibility Fields with Blowing Snow Parameterization

During the winter, we learned that EMC implemented an experimental blowing snow parameteriza-

tion into the RRFS member visibility field. In discussion with forecasters, they were interested to

learn more about the visibility field between RRFS (with blowing snow) versus HRRR (no blowing

snow reduction). Generally, forecasters were interested in examining the RRFS visibility field but

suggested that visibility could be separated into two outputs, one with and one without the blowing

snow visibility reduction component.

In a case from 14 January 2024, the overall differences between the HRRR and RRFSp1

visibility fields were evident, as strong winds occurred behind a cold front associated with a deepening

surface low pressure system across the Great Lakes. Figure 39 summarizes the differences with

the inclusion of the blowing snow parameterization in RRFS, where larger visibility reductions in
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RRFSp1 occur due to both blowing snow across the Northern Plains and interior Northeast and in

lake-effect snow bands across Michigan.

Figure 39: Composite reflectivity and visibility comparison from RRFSp1 (top) and HRRR (bottom), from
forecasts initialized at 12 UTC 13 January 2024, valid at 00 UTC 14 January (f12).

5.5.6 Accuracy and Representativeness of Winter Weather Observations

As in past WWEs, each week we had good discussions about the accuracy and potential biases of

gridded observational “best guess” datasets such as NOHRSC. For certain cases in the sparsely pop-

ulated Western U.S., it was acknowledged that fewer observations were likely assimilated into the

analysis so that NOHRSC relied more heavily on model nowcast fields from the HRRR to generate

snowfall analyses. Thus, there is always some concern among participants in snowfall verification

that we are verifying a model (e.g., HRRR, RRFSp1) with a model-based analysis (NOHRSC). For

example, Figure 40 shows a case examined during WWE from 12 UTC 18 January 2024 where par-

ticipants were concerned about NOHRSC estimates relying on relatively sparse observations across

western Montana, such as those shown by the CoCoRaHS reports map. Despite these concerns,

observational analysis datasets are an extremely useful resource for event review and verification at

a regional or national scale, instead of having to parse through individual point reports of snowfall.
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Figure 40: Point 24h snowfall reports (top) versus NOHRSC analysis, for the 24h ending at 12 UTC 18
January 2024.

Other topical discussions about winter weather observations centered around local storm

reports (LSRs), particularly those for freezing rain. Currently, there are differing practices among

NWS offices in reporting freezing rain and snow amounts. While many reports focus on ”flat ice”

amounts, sometimes reporting practices are ambiguous between reporting ”flat” or ”radial” ice

amounts unless specifically described in the LSR comments. For snow LSRs, NWS offices have

different philosophies. In one WFO they do not report if the snow is less than 2 inches (week

2). There were additional questions about whether NWS Cooperative Observer Program (COOP)

sites or CoCoRaHS data make it into NOHRSC. These data questions continue to be asked by

forecasters, and we would recommend increasing the transparency of which reports make it into

various NOHRSC analyses. Some conference presentations exist on this topic (e.g., Carbin et al.,

2020) but the NOHRSC product workflow does not appear to be well-known in the field. There were
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many indications that participants had doubts about the quality of the NOHRSC in the western U.S.

for a few tested case studies. The use of point observations with varying time and durations may

mean that valid reports need to be standardized to maximize their use outside of PNS reports. One

of the additional difficulties with LSRs that HMT has is that LSRs do not have standard categories

for duration. This makes use of the LSRs difficult in verification. While NWS uses event total,

for the purposes of verification, some of these observations can not be used in sub-event contexts,

lowering their overall use and utility.

6 Summary and Recommendations

In this section, we provide an overall summary of the primary datasets evaluated during this year’s

WWE and our recommendations for future research and development efforts.

6.1 RRFS/REFS

Overall, we were encouraged by the new winter capabilities demonstrated in the REFS, such as

probability-matching ensemble consensus fields for snow, individual member freezing rain QPF,

and ensemble probabilities for freezing rain. However, more ensemble fields are needed to realize

substantial benefits for WPC operational products and HMT activities, most importantly, Freezing

Rain Accumulation Model (FRAM, Sanders and Barjenbruch, 2016) post-processed output and

FRAM probabilities. From the limited sample of winter weather cases we evaluated, RRFSp1 (RRFS

deterministic) model results seem comparable to HRRR for variable density snowfall. Given ongoing

changes to the RRFS configuration during and after the 2023-2024 WWE, light precipitation biases

noted in the 2024 FFaIR experiment (following this experiment’s end) could potentially be an issue

for winter as well, which needs further investigation. Our recommendations (as of the March 2024

version of the RRFS/REFS that we evaluated) are that more research and development are needed.

6.2 CAPS Ensemble and Consensus Products

Overall, HMT had some challenges in evaluating the CAPS ensemble dataset and consensus products,

due to delays in when the data was provided relative to the intensive weeks. However, we were able to

generate discussion of the CAPS products during the latter two intensives. The CAPS deterministic

member we chose to focus on in our snowfall evaluations performed fairly well at Day 2 lead times

relative to the HRRR and REFS members, but struggled at Day 1. We hypothesize this may

be due in part to the lack of data assimilation in the GEFS-initialized CAPS ensemble members,

unlike the HRRR and REFS forecasts, which was more detrimental at the short Day 1 lead time

for CAPS. For the ensemble consensus products, participants had mixed feedback about the new
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spatially aligned mean (SAM) technique compared to other methods such as the local probability

matched mean (LPM), where the LPM tended to retain higher snowfall maxima that were needed

in the MSTP forecast process. We speculate that SAM had a relatively small impact on the forecast

output, since winter precipitation features are in greater alignment in winter (relative to summertime

deep convection), so there were not as many adjustments made by the SAM method to the CAPS

ensemble during the WWE cases. Participants generally indicated they preferred the consensus

products that included the LPM technique. Our recommendation is for the CAPS ensemble and

consensus products to continue research and development.

6.3 Utah SLR Post-Processing

Overall, the University of Utah machine learning snow-to-liquid ratio (SLR) and snowfall products

showed promise, and we appreciated the efforts of the research team to successfully provide a full-

CONUS dataset this past winter season. However, several persistent biases were noted across the

cases examined during this year’s WWE. One such issue was streakiness in SLR values, also affecting

snowfall, in marginal p-type cases along the boundaries of the snowfall footprint (the Utah research

team identified this as a bug in their methods in the post-season). We also noted a consistent high

bias in maximum snow amounts across multiple cases, suggesting that the ML methods struggled

to keep SLRs low enough in marginal thermal cases with partial melting of accumulating snow.

Finally, the ML methods had trouble increasing forecast SLRs enough in extreme high-SLR outlier

cases (e.g., 17 February 2024 in PA/NJ), so we encourage further research to better leverage model

fields suggesting potential for extreme SLRs. Our recommendation is for this project to continue

additional research and development.

6.4 FRANA

Overall, we thought the first CONUS-wide demonstration of FRANA for the 2023-2024 winter season

was successful, with the development team demonstrating it can run in a near-real time, quasi-

operational environment within the MRMS product suite. Building on the efforts of the Spectral

Bin Classifier (SBC), a product previously tested in past WWEs, FRANA and SBC showed great

utility, accurately describing p-type across many cases and regions. While we noted some issues with

FRANA’s calibration, namely an overestimate of maximum freezing rain amounts and errors in the

freezing rain footprint in certain cases, the CIWRO/NSSL team has actively pursued improvements

to the FRANA algorithms during the offseason. The HMT team believes FRANA development

would be further accelerated by greater standardization of freezing rain local storm reports within

the NWS (i.e., all- “flat” or all-“radial” reports). FRANA was well-reviewed by participants in the

WWE intensive weeks and focus groups, and the analysis fills a big gap in winter observational

capabilities for freezing rain. If FRANA continues towards operations, the HMT team anticipates
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FRANA will have a large positive impact for both research and operations, as a highly-valuable

dataset for NWP evaluation/verification of freezing rain as well as in operational settings including

nowcasting during mixed precipitation events. One participant comment summarizes our views well:

“Even if [FRANA] needs more calibration/development, it’s a tool that we’ve never had, but wanted

for some time... I think getting eyes on it on a regular basis will hasten any improvements it may

need.” Our recommendation for FRANA is that it is nearly ready for transition to operations,

following further testing and evaluation during the upcoming winter season and 15th WWE.

Figure 41: Graphical summary of research to operations transition recommendations for the 14th WWE.

7 Other Experiment Activities

7.1 Focus Group Summaries

As part of this year’s WWE, two sets of focus groups were convened to discuss winter weather

hazards. The first set focused on evaluation and discussion of the Freezing Rain Analysis (FRANA)

product being developed within the Multi-Radar Multi-Sensor (MRMS) system by NSSL/CIWRO.

The second set of focus groups discussed winter weather forecast messaging issues related to trans-

portation and road hazards, led by a team from CIRES/CU Boulder and CIWRO/NSSL. Focus

group summaries are provided by the PIs of each respective funded project.

7.1.1 FRANA

Author: Daniel Tripp (CIWRO/NSSL)
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The FRANA focus groups were each comprised of NWS forecasters from various geographic

regions and were advertised to forecasters who had experience with FRANA during the 2023-2024

winter season. The discussion in the focus groups was centered around 4 main themes: (1) FRANAs’

subjective performance for NWS forecasters, (2) flat versus radial ice thickness, (3) stakeholders

needs of ice accumulation information and (4) FRANA footprint/accumulation errors.

For the first theme, forecasters shared examples where FRANA was highly skillful and aided

NWS decision-support. Other examples were also provided of poor FRANA performance that were

typically tied to precipitation-type or NWP temperature error. Overall, forecasters expressed that

they would like to see verification of FRANA for events in their CWA to become more familiar with

its performance. After forecasters become familiar with the product, they indicated that they are

more likely to use it for nowcasting – but in the meantime are primarily using it for post-event

verification.

The discussion for the second theme revealed that forecasters understand the different needs

of stakeholders/public. They strive to provide decision-support using flat and radial ice to meet the

needs of each group. For FRANA, forecasters indicated that they prefer to see both flat and radial

grids, though flat ice seemed to be the preferred choice by the majority since that is the standard

for ice verification.

The conversation about stakeholders revealed that forecasters see FRANA as having a strong

utility for messaging. Forecasters shared that maps of accumulation are an easy way to communicate

areas of high impact and also to solicit reports in data sparse areas. It was reported that FRANA

has been used by stakeholders in crafting a federal disaster declaration for an ice storm during the

2023-2024 winter season.

In the last part of the focus groups, forecasters discussed FRANA errors and what level of tol-

erance they have for them. It was shared that they are familiar with footprint errors in precipitation-

type forecasts and are accustomed to adjusting things over by a few counties if needed. When asked

about the accumulations, forecasters shared that errors of 0.05 inches are typically trivial, errors of

0.1 inches are acceptable for some events, but that errors of 0.2 inches are unacceptable. Several

made the point that events with lower storm-total accumulations come with a forecaster expectation

of higher precision.

Other comments indicated that forecasters value FRANA being updated hourly in real-time

so they can provide this information quickly. In addition to the rapid updates, one forecaster shared

that if FRANA proves to be skillful, the product would likely be used in real-time to decide whether

to upgrade to an ice storm warning or not.
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7.1.2 Road Hazards

Author: Dana Tobin (CIRES/WPC)

Road hazards focus group findings are summarized in Section B of the Appendix.

8 Acknowledgments

We thank numerous people who helped make this year’s WWE successful, starting with the HMT

team who provided facilitator and logistical support throughout the winter and during the WWE

intensive weeks. WPC staff, especially winter weather desk forecasters Josh Weiss, Bryan Jackson,

and Tony Fracasso who contributed to forecast briefings and discussion during each intensive week,

with additional DTB helpers assisting with note-taking and participant questions during the hy-

brid and virtual intensives. Ben Albright (Lynker/WPC) provided MODE verification results and

graphics on an interactive webpage. Kirstin Harnos (WPC) provided an interactive REFS prob-

ability webpage. Tomer Burg (CIRES/WPC) provided an interactive ASOS p-type visualization

webpage. Project PIs Daniel Tripp (CIWRO/NSSL) and Dana Tobin (CIRES/WPC) provided

summaries of the focus group findings in this report. David Harrison and Israel Jirak (SPC) shared

a code base and offered vital collaborations for HMT to construct its own sounding viewer for use

in accomplishing key WWE objectives. Thanks to all attendees of the WWE intensive weeks and

focus groups who provided valuable insight into the winter weather forecast process and challenges

experienced in their individual regions across the U.S., and for their help in evaluating the products

examined during this year’s WWE.

A Featured Numerical Guidance and Data

WWE participants will be evaluating a variety of experimental data, which are listed in Figure 3.

As in previous years’ WWEs, the development of the future Rapid Refresh Forecast System (RRFS)

is at the center of evaluation activities. The core of this system is a Limited Area Model (LAM)

that has the finite volume cubed-sphere (FV3) dynamic core. The deterministic flagship CAM,

referred to as the RRFSp1 (also “RRFSa” or “m1” in Table 2), is still in development and the

model configuration is subject to change. More information about the experimental guidance being

evaluated can be found in Figures 3-42, Table 2, and in the following subsections.
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Name Core MP PBL/SL LSM Conv. Radiation GWD IC/LBC

m1 (CTRL) FV3 Thompson MYNN RUC G-F deep RRTMG GSL RRFS hybrid/GFS
m2 FV3 Thompson* GFS RUC* G-F dp*+sh RRTMG* GSL* RRFS EnKFm1/GEFSm1
m3 FV3 Thompson* MYNN* RUC* saSAS deep RRTMG* GSL* RRFS EnKFm2/GEFSm2
m4 FV3 NSSL# MYNN* RUC* G-F deep* RRTMG* GSL* RRFS EnKFm3/GEFSm3
m5 FV3 NSSL# GFS RUC* G-F dp*+sh RRTMG* GSL* RRFS EnKFm4/GEFSm4
m6 FV3 NSSL# MYNN* RUC* saSAS deep RRTMG* GSL* RRFS EnKFm5/GEFSm5
m7 (HRRR) ARW Thompson MYNN RUC None RRTMG GSL HRRRDAS/RAP

Table 2: EMC RRFS ensemble design. Schemes denoted by an asterisk are those running with stochastic
parameter perturbations (SPP). Schemes denoted by a pound sign are those running with fixed parameter
perturbations. Members 8-14 (not shown) are the same as members 1-7 except they are from 6-h old cycles
(i.e., time lagged).

A.1 EMC - RRFS Ensemble

The RRFS is a rapidly-updated, high-resolution (3 km) ensemble forecast system that runs over a

domain covering North America. Its ensemble includes multiple physics schemes, stochastic param-

eter perturbations, time lagging, initial/lateral boundary condition diversity, and two time-lagged

(TL) members from the operational HRRR system (see Table 2). Deterministic and ensemble fore-

casts are provided to 60 hours four times per day at 00, 06, 12, and 18 UTC. Deterministic forecasts

are provided to 18 hours at all other times.

Ensembles are initialized using 3-km ensemble perturbations drawn directly from the RRFS

Data Assimilation System’s (RDAS) ensemble Kalman filter analysis members. The control member

forecast is initialized from the hybrid 3DEnVar analysis. The RDAS uses a wide variety of conven-

tional observations along with radar reflectivity. It also includes a nonvariational cloud analysis.

Note that owing to different forecast horizons among membership the ensemble size will decrease

as a function of forecast lead time. This means that the full 14 members will be available up to

forecast hour 42 when the HRRR-TL will drop out, 13 members until hour 48 when the on-time

HRRR drops out, 12 members to hour 54 when the RRFS-TL members drop out, and 6 members

to hour 60.

Disclaimer: The RRFS will be under active development through most of the WWE period

and may undergo changes to its underlying scientific package that impact results.

A.2 OU CAPS - FV3-LAM Ensemble and ML Post-processing

A.2.1 Ensemble Forecasts

For the 14th WWE, CAPS will run an 11-member FV3-LAM ensemble on Frontera at the Texas

Advanced Computing Center at 00 UTC for selected winter storm days. The members will be 3-

km grid-spacing (CAM resolution) FV3-LAM models over the Contiguous United States (CONUS)

with various physics configurations paralleling planned members of the future Rapid Refresh Forecast

System (RRFS), including those similar to the present High Resolution Rapid Refresh (HRRR), the
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Global Forecast System (GFS), FV3 version of Warn on Forecast System (WoFS) and Hurricane

Analysis and Forecast System (HAFS) as shown in Figure 42. Forecasts will be run out to 84 h (3.5

days) and will use initial and boundary conditions from the operational GFS and GEFS. A recent

code release of the FV3 Short Range Weather (SRW) App will be used.

Figure 42: Planned CAPS FV3-LAM ensemble member configurations for this year’s WWE.

Days to run will be decided in consultation with the WPC WWE Team and other collab-

orators. CAPS plans to be prepared to run cases by mid-December 2023 and can run cases until

mid-March 2024, depending on the cases selected for WWE. Cases prior to December 1 may still be

run as needed as initial and boundary condition data on AWS can be accessed after-the-fact. Up

to 30 forecast days will be run in order to provide sufficient case days for objective scoring and for

training of machine learning algorithms.

A.2.2 Ensemble Consensus Post-Processing and Combination with HREF

Ensemble Mean, Local Probability Matched-Mean (LPM mean), and Spatial Aligned LPM (SAM-

LPM) precipitation and snowfall (10 times snow-liquid equivalent precipitation) at 6h and 24h (12z-

12z) intervals will be provided for the CAPS CAM ensemble. The Spatial Aligned Mean (SAM)

algorithm has recently been upgraded to a 2-stage process to account for forecast displacements

at the synoptic and meso-alpha scales. The SAM will be run to align all members to a common

position as determined by an initial application of PM mean. This configuration has produced better
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structure in 3- and 6-h rainfall fields than other approaches and that we expect will apply to the

winter period as well.

A.2.3 Machine Learning Calibrated Ensemble Forecast

A machine learning (ML) algorithm (a convolutional neural network deep learning system known as

U-Net) will be trained using four selected members of the CAPS FV3-LAM ensemble plus HREF

ensemble forecasts from the past three winters to predict snowfall at 6h intervals as verified by the

NOHRSC snowfall analyses. Algorithms will be trained independently for each member and the

ML forecasts for each member will be combined into probabilistic forecasts (Neighborhood Ensem-

ble Probability and Neighborhood Maximum Ensemble Probability) of 6-h snowfall accumulation

exceeding 1, 2, and 3 inches. Forecast lead times for these are 6-36 h due to the use of time-lagged

HREF members.

Since last year, the ML algorithm has been updated and re-trained to include derived fields

among its inputs; these include moisture convergence, upslope/downslope wind components, high-

resolution terrain height, and sub-grid-scale terrain variation. These derived fields are used in

addition to the model state variables that had previously been employed.

CAPS forecast results will be posted to the web on their real-time weather page and shared

with the WPC for use in the WWE. Some experimental products that are not yet ready for forecaster

evaluation will be included on the website, scored objectively and possibly retuned before releasing

to the WWE next year.

A.3 Univ. of Utah - ML SLR

The UU group has developed an SLR algorithm trained on high-quality observations from 12 sites

across the Western U.S. where snow safety professionals manually measure snowfall and liquid-

equivalent on a snow board 1 or 2 times daily. Statistics show that, over the Western U.S., the UU

algorithm outperforms the SLR techniques currently used, including MaxTaloft, Kuchera, and Cobb.

The next version of the algorithm will be trained on carefully-quality-controlled SLR observations

from the entire CONUS, and will therefore have increased skill for CONUS-wide forecasts. This

algorithm is currently being applied to output from the GFS and HRRR. It is also being applied to

the RRFS ensemble, with probabilistic SLR and snowfall products generated. Another area of focus

for development on the UU algorithm is precipitation-type recognition. For the RRFS and HRRR,

UU has implemented a precipitation-type algorithm from Birk et al. (2021), an improvement on the

Bourgouin method, so that snowfall forecasts avoid conflating freezing rain QPF with snowfall.
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A.4 NSSL/CIWRO - FRANA

The FRANA is a gridded analysis-of-record for ice accumulations across the CONUS. FRANA is

derived from the Freezing Rain Accumulation Model (FRAM; Sanders and Barjenbruch, 2016),

Multi-Radar Multi-Sensor (MRMS) Pass 1 QPE (MSQPE; Martinaitis et al., 2020), and the surface

hydrometeor phase from the Spectral Bin Classifier (SBC; Reeves et al., 2022). FRAM requires

wet bulb temperature, wind, and a precipitation rate to calculate an ice accumulation. The HRRR

wind/wetbulb is used along with the MSQPE to calculate measurable ice accumulations. MRMS

base reflectivity and the SBC precipitation type (ptype) are also used to determine where freezing

rain is falling and to identify trace ice. FRANA ice accumulations update hourly with new MSQPE,

SBC, and HRRR data.

B Road Hazards Focus Groups

Three focus groups were conducted in partial fulfillment of deliverable 2. These were done as an

embedded activity in the WPC’s Winter Weather Experiment. The purpose of the focus groups was

to allow the CIWRO and CIRES researchers to better understand how road hazards are anticipated

and communicated by NWS forecasters. Because this hasn’t been specifically studied before, we

didn’t have a jumping off point for research and had limited appreciation of the different ways road

weather may be forecast and messaged. Therefore, we did not use a standard set of questions for

each focus group, but rather adapted questions in the wake of each focus group to cover topics

that we felt were missing in the previous discussion. But all three focus groups followed a similar

structure. All had about 45 minutes of group discussion followed by a 30-minute jam board activity

and a 15-minute wrap up.

The responses to questions sometimes drifted away from the original question as forecasters

centered about certain themes. Therefore, a thematic analysis is performed on the responses to

all of the questions to highlight important findings from these focus groups rather than present a

question-by-question analysis.

B.1 Theme 1: Kinds of weather and specific challenges presented by each

Forecasters often reverted to talking about specific winter-weather phenomena and the particular

challenges presented by these as described below.

• Freezing rain/freezing drizzle (FZRA/FZDZ): This was cited by several participants as the

most impactful form of weather in their CWA. Sometimes FZRA and FZDZ were treated as

different phenomena, perhaps because one is more likely to result in black ice and, therefore,
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has different impacts. The reason FZRA/FZDZ is impactful is self-evident, but participants

elaborated noting that “all you need is one icy spot to cause accidents.” Some stated that

“gotcha” events with ice are a challenge defining these as a little ice for just a couple of hours.

Others noted the start time for FZRA is especially important stating that once FZRA starts,

DOTs can’t easily get on top of it as treatment is generally needed before the precipitation

begins. The order of precipitation phase also plays an important role. Some forecasters

noted that if FZRA falls on bare pavement, that that is more challenging from an impacts

perspective than if it falls onto snow (SN). Forecasters also noted that FZRA is an especial

challenge because it may freeze onto elevated objects, but not roads. Being able to anticipate

this is very difficult with current decision-support guidance.

• Snow (SN): This is another obvious issue for road hazards, but forecasters noted that with

SN, there are several degrees of freedom in how SN impacts roads. Some noted that minor to

moderate snowfall can be highly impactful because people are still active on the roads whereas

with bigger events, people stay home. Snow rates, as opposed to storm-total accumulations,

were also mentioned several times. Thresholds for snow rates varied with several noting that 1

to 2 inches per hour is a threshold where plows struggle to keep up. Very low amounts were also

noted as problematic as SN can be “too shallow to even plow.” Many forecasters stated that

the character of snow (i.e., density) is as important as the rate. High density snow can be more

difficult to plow, whereas low density snow may blow back onto the road immediately after

plowing, if the wind is sufficient. Locality issues with SN were also highlighted. Forecasters

with CWAs that include complex terrain noted that in high-elevation passes, the snow rates

can be very high and lead to a singular location where SN is impactful while the remainder of

the CWA is fine. Lake-effect snow was another local form of heavy SN that can impact just

portions of a CWA. Last, heavy snow from mesoscale banding was mentioned several times.

Both lake-effect and mesoscale banding were noted as a unique forecasting challenge because

the exact locations where heavy snow will occur are difficult to pinpoint in advance.

• Freezing fog (FZFG): Several forecasters noted this is one of their more impactful hazards for

driving, which makes sense as it is a hazard that includes two threats (icy roads and reduced

visibility). However, unlike with other hazards, they had very little to say about it except they

lack necessary decision support to anticipate when and where it will form.

• Blizzards/blowing snow : These were mentioned as a difficult forecast challenge for a number

of reasons. First, some forecasters noted that current guidance is not reliable, particularly for

ground blizzards, they also highlighted that blowing snow is dependent on non-meteorological

forcing (namely land use) so can be geographically variable. Last, they noted that the public

and some stakeholders are challenged by the fact that blizzards have a duration requirement.

This makes storms that don’t meet the 3-h minimum difficult to message. These have similar

impacts to blizzards, but that term is not applied. This causes confusion for the public.
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• Snow squalls: While mentioned several times as a threat, issues with snow squall prediction

and detection were rarely discussed.

B.2 Theme 2: Complicating factors that impact roads

Several non-meteorological contributions to road hazards during winter weather were highlighted as

discussed below.

• Mountainous terrain: Forecasters with complex terrain in their CWA noted that snow rates

at which mountain roads are impacted can be different than in flat terrain because the snow

removal equipment is different. They noted that mountain passes are “travel choke points”

that can sometimes lead to profound economic impacts. The position of the rain/snow line in

elevated terrain was highlighted as another very difficult forecasting challenge.

• Urban versus Rural land use: Land use was noted as a control on blowing snow, but forecasters

also noted other important impacts of land use. For example, one forecaster noted that people

are more prone to drive too fast for the weather in rural areas. The impacts of winter weather

when combined with rush-hour traffic in urban areas were also noted as it’s more challenging for

the DOT to operate in heavy traffic and the higher vehicle count introduces more opportunity

for accidents.

• Population changes: Some forecasters noted that in recent years, population shifts have oc-

curred that have resulted in new residents moving to their area having little familiarity with

winter driving conditions. This, they argue, has had a noticeable impact on safety on roads

during winter weather.

B.3 Theme 3: Communication of winter weather road hazards

Forecasters treat communication with the public differently than with key stakeholders such as EMs

or DOTs.

Communication with DOTs has some variability. In some instances, the relationship with the

state DOTs is very collaborative, marked by routine telecons, strategies to develop joint messaging,

and shared information. In other instances, forecasters said they communicate weather threats to

their DOT, but get very little information in return. Many forecasters noted that the kinds of

information they share with DOTs is broader than with the public. This was particularly evident

in discussions of probabilistic guidance. Forecasters noted that DOT partners are appreciative

of probabilistic guidance such as best and worst-case-scenarios. Some DOTs have private-sector

weather support, which was mentioned by several forecasters as a key part of the collaboration. In

particular, they noted that when private-sector entities are involved, the NWS role is limited to what
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the weather will do as opposed to how the weather might impact roads. When private-sector entities

are not involved, forecasters note that they do provide information on how weather might impact

roads, but shy away from making specific recommendations about whether/how to treat roads.

Communication with the public appears to be more limited and refined. Forecasters note

that the public is more interested in knowing how the weather will impact them personally, such

as the best time to travel through certain areas, rather than on the regional impacts. Forecasters

were also quite reserved about the use of probabilistic data for the public. They noted that their

constituencies are able to digest probability of exceedance graphics, but thresholds such as the 10th

and 90th percentiles are often misused. Last, forecasters were varied in how much detail they share

about roads with the public. In some cases, they described their media as “blurry” so as not to cross

lines in the NWS directives. In other cases, they noted they have strong collaborations with their

DOT and private sector partners and have coordinated messages prepared for the public. Last, some

said they simply refer the public to their state’s 511 pages if they want more information about the

road conditions.

B.4 Theme 4: Timelines, content of communication, and sources of weather

information

What and when hazards are communicated as well as how forecasters derive this information was

another theme that emerged. The specific time ranges mentioned and how forecasters communicate

at these ranges are as follows.

• Greater than one week : Forecasters noted that they are sometimes pressured to discuss the

potential for major winter weather 7+ days in advance. They note that this makes them

uncomfortable because there’s still a high degree of uncertainty at these lead times, but social

media often alerts stakeholders and the public to these storms and there is an expectation that

the NWS would address it. There are specific decision points that some stakeholders make at

these longer lead times that forecasters note are legitimate reasons to want advance guidance,

even if there is uncertainty. In particular, they noted that staffing can be adjusted and routing

schedules for ground shipping can be modified to work around the weather.

• Days 4-7 : Forecasters noted an increased comfort with discussing the potential for winter

storms on these time horizons. At these lead times, they focus primarily on headlines such as

the potential for a winter storm and highlight what is uncertain, such as the track, precipitation

type/amount. Several of the forecasters noted that if the storm is expected to exceed certain

thresholds, this triggers specific collaborative sessions with stakeholders. Collaborative sessions

may include webinars, briefings, emails, and chat rooms. For some forecasters, collaborative

sessions with stakeholders are more of a one-way interaction – they present what they know
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and the stakeholders listen and ask questions. For others, collaborative sessions are truly

collaborative – the parties involved share what they know, their mitigation strategies for dealing

with the weather, and work together to develop shared messaging for the public. The kinds of

decision support guidance they seek at this time range is varied. Some tools/forecast systems

that were specifically mentioned include the Winter Storm Outlook, WSSI, NBM forecasts, and

DESI post-processed fields such as its cluster analysis. The WSUP viewer was also mentioned

by a couple of forecasters. Some forecasters noted that days 4-7 present a special challenge

in providing graphical messages. They said that when a graphic is created that shows other

CWAs, there can be conflict over whether that graphic is appropriate to share. One forecaster

said that often what happens is no one can reach a compromise and no graphics are shared,

just a text message produced describing what may happen.

• Days 1-3 : At these timelines, forecasters become more specific about the spatial/temporal

details of the event. They try to pin down how the weather may impact certain activities

such as travel or major community events. Several forecasters noted that in this window of

time, their messaging becomes increasingly less probabilistic and more deterministic in content.

Forecasters listed the same tools/forecast systems as they reference in the Days 4-7 time frame,

but they begin to fold in CAM guidance from the HREF. They also mentioned some WPC

forecasts such as Prob Snow.

• As the event is unfolding or is imminent : Forecasters noted that at these time horizons, they

shift to a nowcasting mode and rely most heavily on current observations of the storm as it

is moving in their direction or is over their area. Mostly, they message what is happening,

the impacts the storm is having (where appropriate), and when to expect the storm to end.

Forecasters noted a clear transition toward using observational trends to help guide their mes-

saging. Some model output was still indicated, such as the HRRR and HREF, but forecasters

seemed to rely much more strongly on upstream evolution of the weather and their own pattern

recognition as the basis for their messaging.

B.5 Theme 5: Current and desired IDSS capabilities

The final theme to emerge from these discussions was on what kinds of decision-support capabilities

forecasters most use and need. Far-and-away the biggest demand was for time of arrival and time of

cessation graphics. However, forecasters didn’t have specific thresholds for what constitutes arrival

or cessation. Some forecasters were aware of and using experimental products that provide this

kind of diagnostic while others were not. Several forecasters said they used simulated radar loops

to provide time of arrival/time of cessation information.

Information about road temperature was also desired. This was noted to be controversial as

forecasters are keenly aware of the need to follow NWS directives, but they felt they lacked key
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information that could help them be more effective collaborators with DOTs by not having road

temperature guidance. One forecaster mentioned that they use MetRo output, but noted it only

provides point forecasts, so doesn’t quite fulfill their needs. Others mentioned they used ProbSR or

had heard of it, but since they can only access an analysis of ProbSR at present, they were uncertain

whether it can truly fill their needs.

Quality observations during an event were also desired. Two forecasters mentioned that

solicitation of LSRs is a challenging task, but much needed as an event is unfolding, especially in

areas where there was heightened uncertainty. One forecaster even mentioned they have a dedicated

person for soliciting LSRs during events.

While many noted that tools for probabilistic weather type exist, some complained that these

perform poorly for freezing rain and asked for improved methods to predict the surface precipitation-

type probabilities.

Improved decision support for blowing snow and ground blizzards was also highlighted. Fore-

casters noted that while tools for traditional blizzards (i.e., both falling and blowing show) exist,

saltation after the snow has stopped is a major hazard that they lack adequate guidance on.

Last, decision support during the clean-up phase of storms was mentioned by several forecast-

ers. They noted that DOTs may be in an accelerated mode for several days after a major winter

storm to clean up side streets and these can be hampered by flash freezes.

C Key recommendations for future research

1. The kind of weather that is happening is pivotal. For example, the playbook for how to

message and respond to FZRA is different than for a blizzard. Therefore, as the HMT evolves

to consider stakeholder engagement (or even to address advances for NWS forecasters), a

balance in phenomena is recommended. We were surprised at how important FZFG was in the

eyes of forecasters as this is not typically mentioned when winter weather is discussed.

2. The forecasters were very cognizant of non-meteorological considerations and how those may

impact whether a weather hazard generates impact. This creates a challenge for synthetic

decision-making environments as forecasters may find it difficult, if not impossible, to specu-

late on how a certain tool or advance may benefit them in operations. In this regard, synthetic

decision-making environments may give a misleading or incomplete conclusion about the vi-

ability of new products. Such a finding suggests products should be evaluated not just in a

testbed setting, but in real time in the WFOs. However, the cost of such an endeavor can be

prohibitive for individual research teams. Hence, we recommend that products evaluated in the

WWE that demonstrate success also be subject to a real-time CONUS-wide testbedding so that
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forecasters can try new products in their home offices. Whether this is supported through the

WWE or the Operations Proving Ground is debatable.

3. Communication is very nuanced and depends on the stakeholder. A simple jumping off point

that builds on recent advances in the WWE is to have participants message content after doing

an activity. This can be done through a private twitter account and/or private slack chat.

This content could then be evaluated by stakeholders to ask whether the messaging is clear

and actionable.

4. Timelines for communication showed two areas where future work in the WWE could provide

benefit. In days 4-7, forecasters were less concerned about guidance and more about messaging

with graphics. They noted that creating graphical content is a challenge due to differences of

opinion among neighboring offices on what is appropriate to share. A future WWE activity

could be to have different forecasters create content for days 4-7 and use social science experts

to have these graphics vetted by stakeholders and the public. Perhaps science-driven guidance

on best practices may help diminish this issue. The other timeline of concern is within 24

of and during the event. Forecasters expressed a desire for more targeted decision support

(e.g., road temperatures) during this time frame. There are some emergent tools that could

be evaluated as a part of the WWE and even partnered with the messaging activity in point

3 above. These include the hourly WSSI and Warn-on-Forecast. We recommend that future

research seek to develop these capabilities and evaluate them as a part of the WWE.
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